Olives and olive oil in cancer prevention
R W Owen¹, R Haubner¹, G Würtele¹, W E Hull², B Spiegelhalder¹ and H Bartsch¹

Epidemiologic studies conducted in the latter part of the twentieth century demonstrate fairly conclusively that the people of the Mediterranean basin enjoy a healthy lifestyle with decreased incidence of degenerative diseases. The data show that populations within Europe that consume the so-called 'Mediterranean diet' have lower incidences of major illnesses such as cancer and cardiovascular disease. Studies have suggested that the health-conferring benefits of the Mediterranean diet are due mainly to a high consumption of fibre, fish, fruits and vegetables. More recent research has focused on other important factors such as olives and olive oil. Obviously fibre (especially wholegrain-derived products), fruits and vegetables supply an important source of dietary antioxidants. What is the contribution from olives and olive oil? Apparently the potential is extremely high but epidemiologic studies rarely investigate consumption of these very important products in-depth, perhaps due to a lack of exact information on the types and amounts of antioxidants present. Recent studies have shown that olives and olive oil contain antioxidants in abundance. Olives (especially those that have not been subjected to the Spanish brining process) contain up to 16 g/kg typified by acteosides, hydroxytyrosol, tyrosol and phenyl propionic acids. Olive oil, especially extra virgin, contains smaller amounts of hydroxytyrosol and tyrosol, but also contains secoiridoids and lignans in abundance. Both olives and olive oil contain substantial amounts of other compounds deemed to be anticancer agents (e.g. squalene and terpenoids) as well as the peroxidation-resistant lipid oleic acid. It seems probable that olive and olive oil consumption in southern Europe represents an important contribution to the beneficial effects on health of the Mediterranean diet. European Journal of Cancer Prevention 13:319–326 © 2004 Lippincott Williams & Wilkins.

Keywords: Antioxidants, olives, olive oils, phenolic compounds, reactive oxygen species

¹Division of Toxicology and Cancer Risk Factors and ²Central Spectroscopy Department, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.

Correspondence to: R W Owen. Fax: (+49) 6221 42 3359. E-mail: R.Owen@DKFZ-Heidelberg.de

Introduction
High intakes of saturated animal and polyunsaturated plant fats are implicated in the aetiology of a number of diseases. In particular, positive associations between elevated intakes of dietary fat and cancer of the colon (Armstrong and Doll, 1975), breast (La Vecchia et al., 1998), prostate (Chan et al., 1998) and ovary (Risch et al., 1994) have been shown. However, the epidemiologic data linking breast (Holmes et al., 1999) and colon cancer (Giovannucci et al., 1994), with total fat intake is equivocal. Recent evidence suggests that it is not only the amount but also the type of dietary fat that is important in the aetiology of some cancers (Bartsch et al., 1999, 2002).

Within this concept epidemiologic studies conducted in the latter part of the twentieth century show fairly conclusively that populations within the Mediterranean basin enjoy a healthy lifestyle with decreased incidence of degenerative diseases. The data suggest that populations within Europe that consume the so-called typical Mediterranean diet have lower incidences of major illnesses such as cancer and cardiovascular disease, despite a high intake of fat. The implication is that the health-conferring benefits of the Mediterranean diet are due mainly to a higher consumption of fibre, fish, fruits and vegetables, but more recent research has focused on other important factors such as olives and olive oil. Although the antioxidant content of olives (Ryan et al., 1999) and olive oil is well researched (Montedoro et al., 1992a,b, 1993), it was not until recently that more precise profiles (Owen et al., 2000a–d, 2003) became available which may well explain their chemoprotective effects (Martin-Moreno et al., 1994; La Vecchia et al., 1995; Trichopoulou et al., 1995; Braga et al., 1998).

Preamble
Olive oil is produced either by centrifugation or hydraulic pressing of malaxed olive drupes (pomace) harvested from the olive groves of Europe and although there are many publications related to the identification of individual compounds in olives and olive oil, comprehensive analyses on the solvent-extractable phenolic fractions are limited. Major contributions in this area come from the data of Ryan et al. (1999), Montedoro et al. (1992a,b),
Angerosa et al. (1995) and more recently Owen et al. (2000a–c). The structures of the major individual phenolic compounds isolated from olives and olive oil by semi-preparative high-performance liquid chromatography (HPLC) were confirmed by liquid chromatography–mass spectrometry (LC–MS) and nuclear magnetic resonance (NMR) (Ryan et al., 1999), NMR (Montedoro et al., 1992a,b, 1993), gas chromatography–mass spectrometry (GC–MS) (Angerosa et al., 1995) and by electrospray ionization mass spectrometry (ESI–MS), GC–MS and NMR (Owen et al., 2000a–d, 2003). The methods used by Owen and colleagues to purify the phenolic compounds in olive oil and olives are depicted in Figures 1 and 2.

Phenolic antioxidant content of olive oils

The major phenolic compounds in olive oil comprise simple phenols, polyphenols, secoiridoids (SID) and lignans. Other than lignans, the remaining compounds are formed from ligstroside (I), oleuropein glycoside (II; Fig. 3) and acteosides (XII and XIII; see Fig. 8). Examples of the structures are shown in Figures 4 and 5. A typical analytical HPLC chromatogram of a methanolic extract of extra virgin olive oil (Fig. 6) displays seven major identifiable peaks of which 1–4 and 6–7 correspond to hydroxytyrosol (VIII), tyrosol (VII), the dialdehydic form of oleuropein (SID-1) lacking a carboxymethyl group (VI), the dialdehydic form of ligstroside (SID-2) lacking a carboxymethyl group (V), the aglycone (SID-3) of oleuropein glycoside (IV) and the aglycone (SID-4) of ligstroside (III). Peak 5 in the chromatogram represents the lignans (+)-1-acetoxypi-noresinol (IX) and (+)-pi-noresinol (X) which co-elute in this system. Small amounts of (+)-hydroxypinoresinol (XI) can also be detected in extra virgin olive oils.

Montedoro et al. (1992a,b, 1993) reported total phenolic content (using Folin–Ciocalteau reagent) of olive oils over 500 mg/kg which is contrary to the data of Owen et al. (2000a–d, 2003) who showed that, on average, olive oils (Table 1) contained 196 ± 19 mg/kg total phenolics as judged by HPLC analysis. However the value for extra virgin (232 ± 15 mg/kg; P < 0.0001). A comprehensive evaluation of the individual phenolics in olive oils was conducted by Owen et al. (2000c), who showed that the difference in total phenolics between extra virgin and refined olive oils was also reflected in the concentration (Table 1) of the major individual components. Appreciable quantities of hydroxytyrosol and tyrosol were detected (Table 1) in olive oils as judged by HPLC with an average of 11.66 ± 2.60 (SEM) and
22.13 ± 3.82 mg/kg respectively. Again, there was a significant difference in the concentration of these phenolics in extra virgin (hydroxytyrosol, 14.42 ± 3.01; tyrosol, 27.45 ± 4.05 mg/kg) and refined olive oils (hydroxytyrosol, 1.74 ± 0.84; tyrosol, 2.98 ± 1.33 mg/kg; \(P < 0.05 \) and \(P < 0.01 \), respectively).

The concentration of SID (Table 1) in olive oils was variable with mean values of 7.97 ± 2.57 mg/kg (SID-1) and 15.75 ± 3.54 mg/kg (SID-2) and were higher in extra virgin olive oils (SID-1, 9.62 ± 3.18; SID-2, 18.09 ± 4.31) compared with refined olive oils (SID-1, 2.00 ± 0.87; SID-2, 7.30 ± 3.01) but these differences were not significant. On the other hand, despite appreciable inter-oil variation the concentration (Table 1) of lignans in extra virgin (41.53 ± 3.93 mg/kg) was significantly higher (\(P < 0.001 \)) than in refined olive oils (7.29 ± 2.56 mg/kg).

The aglycones of oleuropein glucoside and ligstroside were also evident in considerable quantities in the HPLC (Fig. 6) and GC–MS chromatograms but the non-homogeneity of the peaks in many of the oils prevented definitive quantitation. This is now ascribed to the presence of several enantiomers of each compound and in current studies they can now be safely quantitated.

Fig. 3
Structure of precursor secoiridoid glucosides detected in immature olives.

Fig. 4
Structures of the phenolic compounds detected in olive oil. III. Aglycone of ligstroside. IV. Aglycone of oleuropein glucoside. V. Dialdehydic form of ligstroside aglycone lacking a carboxymethyl group. VI. Dialdehydic form of oleuropein glucoside aglycone lacking a carboxymethyl group. VII. Tyrosol. VIII. Hydroxytyrosol.

Fig. 5
Structures of the lignans detected in olive oil. IX. (+)-Pinoresinol. X. (+)-1-Acetoxypinoresinol. XI. (+)-1-Hydroxypinoresinol.
Phenolic antioxidants content in olives and associated brines

The phenolic compounds in olive pericarp comprise simple phenols, polyphenols, acyl glycosides and flavonoids. Typical analytical HPLC chromatograms of a black olive extract and its associated brine are presented in Figure 7a and 7b. Phenolic compounds present in a methanolic extract of black olive pericarp assayed by analytical HPLC (peaks 1–8, Fig. 7a) were the following: hydroxytyrosol (VIII), dihydrocaffeic acid (DHCA, XV), tyrosol (VII), phloretic acid (dihydro-p-coumaric acid, XIV), the acyl glycosides acteoside-1 (XII) and the isomeric form acteoside-2 (XIII), and the flavonoids luteolin (XVI) and apigenin (XVII) (Fig. 8).

Black olive brine (Fig. 7b) contains predominantly hydroxytyrosol (VIII), DHCA (XV), and tyrosol (VII) in essentially the same ratios as in the pericarp, plus a small amount of phloretic acid (XIV). In contrast methanolic extracts of green olive pericarp and corresponding brines contain primarily hydroxytyrosol with only trace amounts of other phenolic substances.

For the two types of olives and their associated brines the amounts of phenolic substances were determined by HPLC analysis, as summarized in Table 2. Black olive pericarp contained 16.40 g/kg total phenolics represented by simple phenols (55%), glycosides (42%) and flavonoids (3%). The simple phenols hydroxytyrosol, tyrosol, dihydrocaffeic acid and phloretic acid represented 35, 3, 11 and 7% of total phenols, respectively. The contributing glycosides were acteoside-1 (30%) and acteoside-2 (12%) while the flavonoids were luteolin (2%) and apigenin (0.8%). The pericarp of green olives contained only 4.48 g/kg total phenolics, almost entirely represented by hydroxytyrosol with only traces of other components. The profiles of the brines mirrored those of the respective pericarps. Black olive brine contained 0.93 g/l total phenolics, almost entirely represented by hydroxytyrosol with only traces of other components. The profiles of the brines mirrored those of the respective pericarps. Black olive brine contained 0.93 g/l total phenolics, almost entirely represented by hydroxytyrosol with only traces of other components.
Squalene content of olive oils
Kiritsakis (1990) reported that olive oil contained the highest amounts of squalene among a range of seasoning oils. Olive oil was shown to contain between 136 and 708 mg/100 g whereas among a large number of other seasoning oils only rice bran oil contained significant quantities (332 mg/100 g). These data are in good agreement with those of Owen et al. (2000c) who compared the squalene content of extra virgin olive oils, refined olive oils and a selection of seed oils. A mean of 290 ± 38 mg/100 g was detected. However, while there was only a weak significant difference between extra virgin (424 ± 21 mg/kg) and refined (340 ± 31 mg/100 g; P < 0.05) olive oils, highly significant differences were evident between olive oils (P < 0.0001) and seed oils (24 ± 5 mg/100 g).

Antioxidant capacity of phenolic compounds in olive oil
The antioxidant potential of phenolic compounds in olive oil has also been the subject of considerable interest. This not only has relevance to a chemoprotective effect in humans but is also a major factor in the high stability (shelf life) of olive oils. The relatively high content (over 70%) of the mono-unsaturated fatty acid oleic acid is also of importance here because it is far less susceptible to oxidation than the polyunsaturated fatty acid linoleic acid which predominates, for example, in sunflower oil (Owen et al., 2000a).

Much of the data have already been reviewed (Owen et al., 2000d and references therein). Using the hypoxanthine/xanthine oxidase model (Owen et al., 2000c) for the generation of reactive oxygen species, Owen et al. (2000c) studied the antioxidative capacity of methanolic extracts of a range of extra virgin (n = 18) and refined olive oils (n = 5) in comparison to seed oils (n = 7). All extracts were shown to exhibit antioxidant properties to a greater or lesser extent. On average, scavenging of the hydroxyl radical (HO•) was significantly higher by extracts of extra virgin olive oil. In fact, extracts of the seed oils exhibited minimum antioxidant activity and the potency of the extra virgin olive oil extracts was significantly greater than that of seed oils (P < 0.0001) and refined olive oil (P < 0.05).

In addition to their direct antioxidant capacity, extracts of olive oil were also potent inhibitors of xanthine oxidase activity as judged by HPLC analysis against a standard curve of uric acid. On average, while seed oils had little effect (inhibition, 6%), xanthine oxidase activity was inhibited to an extent of 48% by extracts of refined and
73% by extracts of extra virgin olive oils (P < 0.05 and P < 0.0001 in comparison with seed oils, respectively).

A comparison was also made between the antioxidant capacity of a concentration range of methanol extracts of each of the three oil types. While extracts of a seed oil (sunflower) and a refined olive oil had minimal effects on the hydroxylation of salicylic acid by HO and on xanthine oxidase activity, an extract of extra virgin olive oil had significant dose-dependent effects on both the hydroxylation of salicylic acid by HO and on xanthine oxidase activity.

Also the phenolic substances isolated and purified from olive oil were potent antioxidants in comparison with the classical in vivo and in vitro free radical scavengers vitamin E (Trolox) and dimethylsulphoxide respectively. Of the three classes of phenolic substances detected in significant quantities in olive oil tyrosol (simple phenol), SID-1 (secoiridoid) and (+)-1-acetoxypinoresinol (lignan) gave stronger responses than the classical antioxidant Trolox.

Owen et al. (2000e) have shown that the faecal matrix is capable of generating reactive oxygen species in abundance and furthermore established the potential of phenolic compounds isolated from olive oil to scavenge reactive oxygen species generated in the stool (Owen et al., 2000a). The data showed that all three classes of phenolic antioxidants significantly attenuated the signals obtained in their absence. The IC50 (inhibitory concentration, 50%) values obtained were of the same order as in the standard assay.

Antioxidant capacity of phenolic compounds in olives

The antioxidant capacity of olive pericarp extracts was determined by not only the hypoxanthine/xanthine oxidase assay but also the production of 8-oxo-2dG in the 2-deoxyguanosine assay (Owen et al., 2003). The reduction of total oxidation products as a function of the volume of extract added to the assay is shown in Figure 9.

Black olive extract with its greater concentration of phenolic compounds exhibited a higher antioxidant capacity than green olive extract. The black and green olive extracts had IC50 values of 30 and 130 µl, respectively, for the hypoxanthine/xanthine oxidase assay and 50 and 90 µl for the 2-deoxyguanosine assay. The higher efficiency in the hypoxanthine/xanthine oxidase assay for black olive extract is probably due to the observed significant inhibition of xanthine oxidase activity (IC50 = 200 µl). The brines for the two types of olives also inhibited the attack of reactive oxygen species in a similar dose-dependent manner but with higher IC50 values.

Hydroxytyrosol (VIII), dihydrocaffeic acid (XV), tyrosol (VII), phloretic acid (XIV) and acteoside-1 (XII) were tested individually in the hypoxanthine/xanthine oxidase assay. Each compound inhibited the hydroxylation of salicylic acid by reactive oxygen species in a dose-dependent manner as shown in Figure 10 with the IC50 value listed in the figure legend. There was no evidence of direct xanthine oxidase inhibition in the HPLC chromatograms.
The flavonoids luteolin and apigenin are poorly soluble in aqueous media. Therefore, they were dissolved in dimethylsulphoxide to study their possible effects on xanthine oxidase activity. Because dimethylsulphoxide itself is a potent inhibitor of hydroxyl radical attack on salicylic acid, it was not possible to perform the inhibition studies described for the other phenols. However, in a test for xanthine oxidase activity (uric acid production), both luteolin (XVI; IC$_{50}$ = 77 µmol/l) and apigenin (XVII; IC$_{50}$ = 186 µmol/l) proved to be relatively potent inhibitors of xanthine oxidase, comparable with allopurinol (IC$_{50}$ = 74 µmol/l), as shown in Figure 11.

Discussion

Olives and extra virgin olive oils contain high concentrations of phenolic antioxidants and squalene. Therefore in an area such as the Mediterranean basin where olives are liberally consumed and olive oil is the cooking and garnishing fat of choice, intake of phenolic antioxidants and squalene in the diet is likely to be considerably higher than in other areas of Europe. Probably this is a major factor which determines the far lower incidence of cancer in the region.

Habitual high intakes of olives and extra virgin olive oil will provide a continuous supply of antioxidants, which may mediate their effects by reducing oxidative stress via inhibition of lipid peroxidation, thereby inhibiting formation of DNA adducts (Bartsch et al., 1999, 2002), factors that are currently linked to a host of diseases including cancer. The compounds described here are fat soluble and therefore a considerable proportion are likely to be absorbed and thereby should have chemopreventive effects against, among others, breast cancer. The non-absorbed remainder will reach the large bowel where they can exert their chemopreventive effects against colorectal cancer.

The identification of lignans as major antioxidant components of the phenolic fraction in extra virgin olive oil especially has considerable impact, because they have been studied in far greater depth than the simple phenols and secoiridoids. The transformation of (+)-pinosylvin into the so-called mammalian lignans enterodiol and enterolactone has also been demonstrated recently (Owen et al., 2001) indicating that it is not only secoisolariciresinol diglucoside (Thompson et al., 1996) that is the precursor of these lignans. Animal, cellular and metabolic studies have shown they possess important biological effects that may contribute to their potential as chemopreventive agents (Adlercreutz et al., 1992).

Olive oils also contain high concentrations of squalene and, because squalene is to a large extent transferred to the skin, its major protective effect is thought to be against skin cancer, and this is supported by studies showing inhibition of this neoplasm in rodents (Newmark, 1997) and low incidence within populations of the Mediterranean basin. The mechanism is probably by scavenging singlet oxygen generated by UV light.

These observations have ramifications for the chemopreventive effect of the Mediterranean diet of which olives and olive oil are essential components. The differences highlighted in this review between extra virgin and refined olive oils and black and green olives in antioxidant content indicates that, in future epidemiologic and case–control studies, both olive type and the nature and source of olive oil consumed should be differentiated in ascertaining cancer risk. The study of the inter-relation between reactive oxygen species and dietary antioxidants in olives and olive oil is an area of real promise for elucidating mechanisms of breast and colorectal carcinogenesis and possible future chemopreventive strategies.

Acknowledgements

R.W.O. is grateful to the Verein zur Förderung der Krebsforschung in Deutschland e.V. for funding.

References

